Synthesis of the Delafossite-Type CulnO₂

M. Shimode,^{*,1} M. Sasaki,[†] and K. Mukaida[†]

*Division of Chemical and Material Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan; and †Department of Material Science and Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan

Received April 6, 1999; in revised form November 23, 1999; accepted December 13, 1999

A new delafossite type oxide CuInO₂ was synthesized by cation exchange reaction of CuCl with LiInO₂, which was produced from Li₂O and In(OH)₃. An almost single phase was obtained at 350°C for 144 h. The structure of CuInO₂ was refined by Rietveld analysis and the final *S* value became 1.1636. CuInO₂ is rhombohedral, *R*-3*m*, *a* = 3.2922 Å, *c* = 17.388 Å. © 2000 Academic Press

Key Words: Delafossite-type oxide; solid state reaction; structure refinement.

INTRODUCTION

Delafossite, CuFeO₂ was discovered by Pabst who also reported its structure (1). The crystal structure of the delafossite-type oxide with formula ABO_2 (A, monovalent metal; B, trivalent metal), can be described as the alternate stacking of edge-shared BO_2^- octahedral layers and A^+ -ion layers perpendicular to the c axis. Each A^+ ion layer is linearly coordinated by two O^{2-} ions (2). Shannon *et al.* (2) synthesized the series containing the noble metal ions Cu⁺, Ag^+ , Pd^+ , and Pt^+ ions in the A site. The oxides with a noble metal are difficult to prepare by a conventional solid state reaction, because noble metal oxides used as reagents frequently decompose before reaction occurs. So they used various preparation techniques such as hydrothermal, metathetical, and oxidizing flux reactions. Regarding B site new members of delafossite-type ABO_2 , Ishiguro et al. (3) synthesized CuYO₂, and Doumerc et al. (4) prepared $CuScO_2$.

Figure 1 shows the structure field map for various ABO_2 oxides (2–6). On the delafossite-type oxide ABO_2 with Cu⁺ ion in the A site, there are many material systems which contain small ions in the 0.54 to 0.67Å range, and large lanthanoid ions, in the 0.95 to 1.06Å range in the B site. However, only very few compounds have midsize ions in the

B site. The ionic radius of In^{3+} (0.8 Å) ion is situated in this intermediate range.

Gessner (7) reported the preparation of CuInO₂ using an exchange reaction of CuCl and NaInO₂. However, the crystal structure of the reaction product has not been refined. Thus, a new Cu-containing delafossite oxide with In^{3+} ion in the *B* site was tried to synthesize and analyze the structure.

EXPERIMENTAL

Synthesis

Preparation of $CuInO_2$ was tried both by solid state reaction using the same procedure as that for synthesizing $CuFeO_2$ (5) and $CuAlO_2$ (6) and by cation exchange reaction, which is employed in the synthesis of $CuScO_2$ (4). Each preparation method is given as follows.

Solid state reaction. Cu₂O (Kojundo Chemical Lab. Co., Ltd., 99%) and In₂O₃ (Kojundo Chemical Lab. Co., Ltd., 99.9%) or In(OH)₃ powder (Kojundo Chemical Lab. Co., Ltd., 99.99%) were mixed in a dry process (mixing ratio: Cu: In = 50: 50 at %) and shaped by CIP method (pressure of 60 MPa, pressing time of 60 s). Shaped specimens were heated at 1000° or 1100°C for 24 h in Ar (heating rate, 250° Ch⁻¹; flowing rate, 3.3×10^{-6} m³s⁻¹).

Cation exchange reaction. Gessner (7) applied NaInO₂ with α -NaFeO₂-type structure in an exchange reaction with CuCl. In this work, LiInO₂ with α -LiFeO₂-type structure was used as a reactant for an exchange reaction with CuCl and the following exchange reaction was assumed:

$$CuCl + LiInO_2 \longrightarrow CuInO_2 + LiCl.$$
[1]

LiInO₂ was prepared by solid state reaction as a first stage. Li₂O (Kojundo Chemical Lab. Co., Ltd., 99%) and In(OH)₃ were mixed in a dry process (mixing ratio: Li: In = 50: 50 at%), shaped, and heated at 550°C for 72 h in air (heating rate: 250° Ch⁻¹). The LiInO₂ powder obtained was mixed with CuCl (Kishida Chemical Co., Ltd., 98%) in

¹To whom correspondence should be addressed. E-mail: shimode@ whale.cc.muroran-it.ac.jp.

FIG. 1. Structure field map for various ABO₂ compounds. Structural data were taken from (2-6).

a dry process (mixing ratio: Cu: Li = 50: 50 at%). Molded specimens were sealed in an evacuated silica glass tube and heated between 350 and 600°C. After the heat treatment, the reaction products were washed with distilled water to leach out the remaining LiCl and then dried.

Crystal Structure Analysis

The powder specimens obtained were evaluated by X-ray diffraction (Rigaku Denki, RV-200) with Cu $K\alpha_1$ radiation. Intensity data were collected from 5° to 80° in 2 θ at room temperature; scan speed, 4°min⁻¹; scan step, 0.04°. The structure and the lattice parameters were refined by Rietveld analysis using the computer program RIETAN-97 β (8). For the Rietveld analysis, X-ray diffraction measurement was performed in 2 θ range from 5° to 140°, at room temperature; scan speed, 2°min⁻¹; scan step, 0.02°. For this analysis, the Voigt function was used for the diffraction profile and all atom occupations were fixed to 1.

RESULTS AND DISCUSSION

The relationship between reaction conditions and products is summarized in Table 1. Generally, the delafossitetype compounds including Cu^+ ion in the *A* site are produced by solid state reaction of the oxides. However, solid state reaction occurred neither in the $Cu_2O-In_2O_3$ nor in the $Cu_2O-In(OH)_3$ system at any investigated heat treatment conditions. This result agrees with that of Hahn and Lorent (9). LiInO₂ used in cation exchange reaction was obtained under the heat treatment condition described in the Experimental section. LiInO₂ obtained was refined as tetragonal symmetry; space group, I41/amd; the lattice parameters of the tetragonal cell, a = 4.3166, c = 9.3498 Å by Rietveld analysis. This lattice parameters nearly agree with the values reported in the JCPDS card (10) (a = 4.3143, c = 9.3419 Å).

The diffraction peaks of CuCl and LiInO₂ disappeared for the products obtained by cation exchange reaction under various heat treatment conditions. For the specimens synthesized at 450–600°C for 72 h, the main phases formed were Cu₂O and In₂O₃. For any products obtained by

TABLE 1 Relationship between Reaction Conditions and Products for the Cu–In–O System

Reaction system	Heat treatment conditions	Products
Solid state reaction by Cu ₂ O and In ₂ O ₃	1100°C, 24 h 1000°C, 24 h	Cu ₂ O and In ₂ O ₃ Cu ₂ O and In ₂ O ₃
Solid state reaction by Cu ₂ O and In(OH) ₃	1100°C, 24 h 1000°C, 24 h	Cu_2O and In_2O_3 Cu_2O and In_2O_3
Cation exchange reaction from CuCl and LiInO ₂	600°C, 72 h 550°C, 72 h 450°C, 72 h 350°C, 72 h 350°C, 144 h	CuInO ₂ , Cu ₂ O and In ₂ O ₃ CuInO ₂ , Cu ₂ O and In ₂ O ₃ CuInO ₂ , Cu ₂ O and In ₂ O ₃ CuInO ₂ , Cu ₂ O and In ₂ O ₃ CuInO ₂ , Cu ₂ O and unknown phase

FIG. 2. Calculated, difference plots by Rietveld refinement and observed XRD pattern for the Cu–In–O system obtained by cation exchange reaction at 350° C for 144 h. Rietveld refinement was achieved with two phases of R-3m CuInO₂ and Pn-3m Cu₂O.

cation exchange reaction, unknown diffraction peaks which could not be attributed in the JCPDS cards tended to increase with decreasing heat treatment temperature. The main product prepared at 350° C for 144 h was of unknown phase. No phase has been reported in the Cu-In-O system except CuIn₂O₅ synthesized by Bergerhoff *et al.* (11) and CuInO₂ prepared by Gessner (7). The diffraction pattern of the unknown phase did not correspond to CuIn₂O₅. Some X-ray diffraction peaks of the unknown phase fit those of the compound synthesized by Gessner (7). The pattern of the products synthesized by cation exchange reaction is similar to that of the delafossite-type AgInO₂ (12).

Thus, the unknown phase obtained by cation exchange reaction was assumed to be the delaffossite-type CuInO₂ with space group R-3m, and its structure was refined by Rietveld analysis. Rietveld analysis performed on the sample obtained at 350°C for 144 h with the highest diffraction intensities. For the product obtained in the same reaction condition described above, the diffraction peaks were

 TABLE 2

 Rietveld Refinement Results of CuInO₂ (Space Group: R-3m)

a (Å)	c (Å)	V (Å ³)	R_{wp}	R _e	S	R _B	$R_{\rm F}$	
3.2922(1)	17.388(4)	163.21	10.44	8.97	1.1636	4.47	3.82	

Note. R_{wp} , *R*-weighted pattern; R_e , *R*-expected; *S*, goodness-of-fit between calculated and observed data, $S = R_{wp}/R_e$; R_B , *R*-Bragg factor; R_F , *R*-structure factor. around 2θ (deg), of 35° and 40° . These peaks were assigned to (411) and (332) of In_2O_3 , and Rietveld analysis was carried out with the three phases of the delafossite-type

 TABLE 3

 Diffraction Data for CuInO2 Obtained by Cation

 Exchange Reaction

h	k	l	d _{cal.}	$d_{\rm obs.}$	I/I_0	h	k	l	$d_{\rm cal.}$	d _{obs.}	I/I_0
0	0	3	5.7960	5.8241	45	1	1	12	1.8077	1.0882	6
0	0	6	2.8980	2.9043	57	1	2	2	1.0696	1.0697	6
1	0	1	2.8136	2.8220	3	2	1	4	1.0460	1.0464	4
0	1	2	2.7092	2.7153	100	1	2	5	1.0293	1.0297	2
1	0	4	2.3841	2.3878	45	1	0	16	1.0155	1.0163	3
0	1	5	2.2048	2.2077	13	2	1	7	0.9886	0.9887	1
0	0	9	1.9320	1.9317	1	0	0	18	0.9660	0.9660	6
1	0	7	1.8729	0.8747	4	0	1	17	0.9628	0.9630	1
0	1	8	1.7285	1.7312	30	3	0	0	0.9504	0.9507	3
1	1	0	1.6461	1.6483	24	1	1	15	0.9478	0.9480	1
1	1	3	1.5835	1.5848	6	2	0	14	0.9365	0.9369	2
1	0	10	1.4845	1.4861	19	2	1	10	0.9156	0.9162	3
0	0	12	1.4490	1.4503	8	0	3	6	0.0031	0.0032	3
1	1	6	1.4313	1.4320	16	3	0	6	0.9031 0.903	0.9051 0.9052	5
0	2	1	1.4208	1.4189	1	1	2	11	0.8904	0.8905	1
2	0	2	1.4068	1.4075	10	1	0	19	0.8714	0.8718	2
0	1	11	1.3825	1.3825	1	0	2	16	0.8643	0.8644	2
0	2	4	1.3546	1.3558	6	3	0	9	0.8528	0.8526	1
2	0	5	1.3191	1.3200	2	0	3	9	0.0520	0.0520	1
1	1	9	1.2530	1.2551	1	2	1	13	0.8392	0.8392	1
0	2	7	1.2364	1.2368	2	1	1	18	0.8331	0.8333	5
1	0	13	1.2109	1.2120	2	0	1	20	0.8316	0.8318	4
2	0	8	1.1921	1.1929	5	0	0	21	0.8280	0.8281	1
0	1	14	1.1387	1.1393	4	2	2	0	0.8231	0.8230	2
0	2	10	1.1024	1.1033	3						

 TABLE 4

 Atom Positions and Isotropic Atomic Displacement Parameters of CuInO₂ (Space Group: *R-3m*)

Atom	X	У	Ζ	$B_{\rm iso.}$ (Å ²)
Cu	0	0	0	0.9196(5)
In	0	0	0.5	0.1799(9)
0	0	0	0.1061(45)	0.4077(3)

 $CuInO_2$, Cu_2O , and In_2O_3 . However, the refinement result did not fit with the observed X-ray diffraction pattern especially in the In₂O₃ because of lower diffraction intensities for In₂O₃. As a result, these diffraction peaks are assigned to an unknown phase. Therefore, the structure refinement was performed for a two-phase mixture of the delafossite-type CuInO₂ and Cu₂O. Figure 2 shows the fitting profile calculated by Rietveld refinement, the observed X-ray diffraction data, and their difference plots. The refinement results are listed in Table 2. In this work, S (goodness-of-fit between calculated and observed data) was used in order to verify the validity of the refinement result. For Rietveld analysis, the most important R factor is R_{wp} (R-weighted pattern). However, R_{wp} depends heavily on the specimen and the measurement conditions of X-ray diffraction. Best R_{wp} statistically anticipated, is R_e (*R*-expected). Thus, *S* defined as $S = R_{wp}/Re$, indicates a quality of the fit between calculated and observed data. If the S value is lower than 1.3, refinement is suitable. Judging from the low S value in Table 2, the unknown phase obtained in this work can be assumed to be $CuInO_2$ with delafossite-type structure. It is concluded that the unknown phase is a new compound, CuInO₂, converted from LiInO₂ with ordered rock-salt structure into delafossite-type structure by the cation exchange reaction of Li to Cu.

The composition of $CuInO_2$ has been confirmed "CuInO₂" by Rietveld refinement. A chemical analysis does not work on the Cu₂O-containing CuInO₂.

 TABLE 5

 Selected Interatomic Distances (Å) and Bond Angles (deg.) for

 CuInO, (Space Group: *R-3m*)

02 (Space Group: A	511)
(× 2)	1.845(7)
(× 6)	2.172(6)
(× 6)	3.292(0)
(× 6)	2.835(9)
(× 6)	98.52(7)
(× 6)	81.48(2)
(× 6)	118.97(6)
(× 6)	98.52(7)
	(× 2) (× 6) (× 6) (× 6) (× 6) (× 6) (× 6) (× 6) (× 6) (× 6)

Note. Symmetry codes: (none) x y z; (i) x, y - 1, z; (ii) $x + \frac{1}{3}, y + \frac{2}{3}, z - \frac{1}{3}$, (iii) $x + \frac{1}{3}, y - \frac{1}{3}, z - \frac{1}{3}$; (iv) $x + \frac{2}{3}, y + \frac{1}{3}, \frac{1}{3} - z$.

 TABLE 6

 Lattice Parameters for CuInO2 and Various Delafossite-Type Compounds

Compounds	a (Å)	c (Å)	Reference
CuAlO ₂	2.8604	16.953	(6)
CuCrO ₂	2.9761	17.102	(2)
CuFeO ₂	3.0347	17.162	(14)
CuScO ₂	3.2155	17.089	(4)
CuInO ₂	3.2922	17.388	This work
CuEuO ₂	3.6311	17.069	(15)
CuNdO ₂	3.7137	17.092	(16)
AgAlO ₂	2.8902	18.272	(2)
AgFeO ₂	3.0391	18.590	(2)
AgScO ₂	3.2112	18.538	(2)
AgInO ₂	3.2772	18.881	(2)
AgTlO ₂	3.5682	18.818	(2)

Table 3 shows diffraction data of $CuInO_2$ obtained by cation exchange reaction. All of the diffraction peaks of $CuInO_2$ can be marked on a rhombohedral cell.

The atom positions and isotropic atomic displacement parameters are given in Table 4. Selected interatomic disetances and bond angles are shown in Table 5. In the structure of delafossite-type ABO_2 , A^+ ions are surrounded by two linear O^{2^-} ions and B^{3^+} ions are surrounded by six O^{2^-} ions. Cu–O and In–O distances are 1.845 and 2.172 Å, respectively. They agree well with the values calculated from the effective ionic radii (13), Cu⁺ = 0.46, In³⁺ = 0.80, $O^{2^-} = 1.38$ Å. Table 6 compares the lattice parameters of CuInO₂ with those of the other delafossite-type compounds previously reported. In the series containing Cu⁺ ion in the A site, and a axis increases with increasing ionic radii in the B site, whereas the c axis of CuInO₂ is the longest axis. A similar tendency is found in the series with the Ag⁺ ion in the A site.

CONCLUSIONS

The preparation of a new delafossite-type compound, ABO_2 , containing Cu⁺ ion in the A site and In³⁺ ion in the B site, was attempted by cation exchange reaction of Li to Cu in the CuCl-LiInO₂ system and by solid state reaction. No reaction occurred in the Cu₂O-In₂O₃ and Cu₂O-In(OH)₃ systems under various heat treatment conditions. CuInO₂ was obtained only by cation exchange reaction. Rietveld refinement confirmed that the composition is CuInO₂ and that the structure is of delafossite-type with lattice parameters of the rhombohedral cell, a = 3.2992, c = 17.388 Å.

ACKNOWLEDGMENT

The authors thank Dr. Hisanori Yamane at Tohoku University for Rietveld analysis.

REFERENCES

- 1. A. Pabst, Am. Mineral. 31, 539 (1946).
- 2. R. D. Shannon and D. B. Rogers, Inorg. Chem. 10, 713 (1971).
- 3. T. Ishiguro, N. Nishizawa, N. Mizutani, and M. Kato, J. Solid State Chem. 49, 232 (1983).
- J. Doumerc, A. Ammar, A. Wichainchai, M. Pouchard, and P. Hagenmuller, J. Phys. Chem. Solids 48(1), 37 (1987).
- H. Wiedersich, J. W. Savage, A. H. Muir, and D. G. Swarthout, *Mineral. Mag.* 36, 643 (1968).
- 6. T. Ishiguro, A. Kitazawa, N. Mizutani, and M. Kato, J. Solid State Chem. 40, 170 (1981).

- 7. W. Gessner, Silikattechnik 21, 45 (1970).
- 8. F. Izumi, "The Rietveld Method" (R. A. Young, Ed.). Oxford Univ. Press, London, 1993.
- 9. H. Hahn and C. Lorent, Z. Anorg. Allg. Chem. 279, 281 (1955).
- 10. JCPDS Card File, 43-1131.
- 11. G. Bergerhoff and H. Kasper, Acta Crystallogr. Sect. B 24, 388 (1968).
- 12. JCPDS Card File, 21-1077.
- 13. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- 14. JCPDS Card File, 39-0246.
- 15. JCPDS Card File, 37-1356.
- 16. JCPDS Card File, 37-1358.